FrameNet-based Semantic Parsing using Maximum Entropy Models
نویسندگان
چکیده
As part of its description of lexico-semantic predicate frames or conceptual structures, the FrameNet project defines a set of semantic roles specific to the core predicate of a sentence. Recently, researchers have tried to automatically produce semantic interpretations of sentences using this information. Building on prior work, we describe a new method to perform such interpretations. We define sentence segmentation first and show how Maximum Entropy re-ranking helps achieve a level of 76.2% F-score (answer among topfive candidates) or 61.5% (correct answer).
منابع مشابه
A Maximum Entropy Approach to FrameNet Tagging
The development of FrameNet, a large database of semantically annotated sentences, has primed research into statistical methods for semantic tagging. We advance previous work by adopting a Maximum Entropy approach and by using Viterbi search to find the highest probability tag sequence for a given sentence. Further we examine the use of syntactic pattern based re-ranking to further increase per...
متن کاملUsing distributed word representations for robust semantic role labeling (Utilisation de représentations de mots pour l'étiquetage de rôles sémantiques suivant FrameNet) [in French]
Résumé. D’après la sémantique des cadres de Fillmore, les mots prennent leur sens par rapport au contexte événementiel ou situationnel dans lequel ils s’inscrivent. FrameNet, une ressource lexicale pour l’anglais, définit environ 1000 cadres conceptuels couvrant l’essentiel des contextes possibles. Dans un cadre conceptuel, un prédicat appelle des arguments pour remplir les différents rôles sém...
متن کاملShallow Semantic Parsing Based on FrameNet, VerbNet and PropBank
This article describes a semantic parser based on FrameNet semantic roles that uses a broad knowledge base created by interconnecting three major resources: FrameNet, VerbNet and PropBank. We link the above resources through a mapping between Intersective Levin classes, which are part of PropBank’s annotation, and the FrameNet frames. By using Levin classes, we successfully detect FrameNet sema...
متن کاملOpen Text Semantic Parsing Using FrameNet and WordNet
This paper describes a rule-based semantic parser that relies on a frame dataset (FrameNet), and a semantic network (WordNet), to identify semantic relations between words in open text, as well as shallow semantic features associated with concepts in the text. Parsing semantic structures allows semantic units and constituents to be accessed and processed in a more meaningful way than syntactic ...
متن کاملMaximum Entropy Models for FrameNet Classification
The development of FrameNet, a large database of semantically annotated sentences, has primed research into statistical methods for semantic tagging. We advance previous work by adopting a Maximum Entropy approach and by using previous tag information to find the highest probability tag sequence for a given sentence. Further we examine the use of sentence level syntactic pattern features to inc...
متن کامل